Lecture II

æ

・ロト ・四ト ・ヨト ・ヨト

Recall from Lecture I

We are looking at ordinal **GLP**-spaces, i.e., polytopological spaces of the form $(\delta, (\tau_{\zeta})_{\zeta < \xi})$, where τ_0 is the interval topology and $\tau_{\zeta+1}$ is generated by τ_{ζ} together with the sets

$$D_{\zeta}(A) := \{ \alpha : \alpha \text{ is a } \tau_{\zeta} \text{ limit point of } A \}$$

all $A \subseteq \delta$.

 au_1 is the club topology. The non-isolated points are those lpha with uncountable cofinality.

We observed that $D_1(A) = \{ \alpha : A \cap \alpha \text{ is stationary in } \alpha \}.$

Recall from Lecture I

We are looking at ordinal **GLP**-spaces, i.e., polytopological spaces of the form $(\delta, (\tau_{\zeta})_{\zeta < \xi})$, where τ_0 is the interval topology and $\tau_{\zeta+1}$ is generated by τ_{ζ} together with the sets

$$D_{\zeta}(A) := \{ \alpha : \alpha \text{ is a } \tau_{\zeta} \text{ limit point of } A \}$$

all $A \subseteq \delta$.

 τ_{1} is the club topology. The non-isolated points are those α with uncountable cofinality.

We observed that $D_1(A) = \{ \alpha : A \cap \alpha \text{ is stationary in } \alpha \}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うへつ

Recall from Lecture I

We are looking at ordinal **GLP**-spaces, i.e., polytopological spaces of the form $(\delta, (\tau_{\zeta})_{\zeta < \xi})$, where τ_0 is the interval topology and $\tau_{\zeta+1}$ is generated by τ_{ζ} together with the sets

$$D_{\zeta}(A) := \{ \alpha : \alpha \text{ is a } \tau_{\zeta} \text{ limit point of } A \}$$

all $A \subseteq \delta$.

 τ_{1} is the club topology. The non-isolated points are those α with uncountable cofinality.

We observed that $D_1(A) = \{ \alpha : A \cap \alpha \text{ is stationary in } \alpha \}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うへつ

Recall also the following definition

Definition

We say that $A \subseteq \delta$ is 0-simultaneously-stationary in α (0-s-stationary in α , for short) if and only if $A \cap \alpha$ is unbounded in α .

For $\xi > 0$, we say that $A \subseteq \delta$ is ξ -simultaneously-stationary in α (ξ -s-stationary in α , for short) if and only for every $\zeta < \xi$, every pair of ζ -s-stationary subsets $B, C \subseteq \alpha$ simultaneously ζ -s-reflect at some $\beta \in A$, i.e., $B \cap \beta$ and $C \cap \beta$ are ζ -s-stationary in β .

A is 2-s-stationary in $\alpha \Leftrightarrow$ every pair of stationary subsets of α simultaneously reflect to some $\beta \in A$.

< ロ > < 同 > < 三 > < 三 >

Recall also the following definition

Definition

We say that $A \subseteq \delta$ is 0-simultaneously-stationary in α (0-s-stationary in α , for short) if and only if $A \cap \alpha$ is unbounded in α . For $\xi > 0$, we say that $A \subseteq \delta$ is ξ -simultaneously-stationary in α (ξ -s-stationary in α , for short) if and only for every $\zeta < \xi$, every pair of ζ -s-stationary subsets $B, C \subseteq \alpha$ simultaneously ζ -s-reflect at some $\beta \in A$, i.e., $B \cap \beta$ and $C \cap \beta$ are ζ -s-stationary in β .

A is 2-s-stationary in $\alpha \Leftrightarrow$ every pair of stationary subsets of α simultaneously reflect to some $\beta \in A$.

< ロ > < 同 > < 三 > < 三 >

Recall also the following definition

Definition

We say that $A \subseteq \delta$ is 0-simultaneously-stationary in α (0-s-stationary in α , for short) if and only if $A \cap \alpha$ is unbounded in α . For $\xi > 0$, we say that $A \subseteq \delta$ is ξ -simultaneously-stationary in α (ξ -s-stationary in α , for short) if and only for every $\zeta < \xi$, every pair of ζ -s-stationary subsets $B, C \subseteq \alpha$ simultaneously ζ -s-reflect at some $\beta \in A$, i.e., $B \cap \beta$ and $C \cap \beta$ are ζ -s-stationary in β .

A is 2-s-stationary in $\alpha \Leftrightarrow$ every pair of stationary subsets of α simultaneously reflect to some $\beta \in A$.

< ロ > < 同 > < 三 > < 三 >

Proposition

 α is not isolated in the τ_2 topology if and only if α is 2-s-stationary

Proof.

Proposition

 α is not isolated in the τ_2 topology if and only if α is 2-s-stationary

Proof.

If α is not 2-s-stationary, there are stationary $A, B \subseteq \alpha$ such that $D_1(A) \cap D_1(B) = \{\alpha\}$, hence α is isolated. Now suppose α is 2-s-stat. and $\alpha \in U = C \cap D_1(A_0) \cap \ldots \cap D_1(A_{n-1})$, where $C \subseteq \alpha$ is club. We claim that U contains some ordinal other than α . It is enough to show that $D_1(A_0) \cap \ldots \cap D_1(A_{n-1})$ is stationary. Suppose first that n = 2. Fix any club $C' \subseteq \alpha$. The sets $C' \cap A_0$ and $C' \cap A_1$ are stationary in α , and therefore they simultaneously reflect at some $\beta < \alpha$. Thus $\beta \in C' \cap D_1(A_0) \cap D_1(A_1)$. Now, assume it holds for n and let us show it holds for n + 1. Fix a club $C' \subseteq \alpha$. By the ind. hyp., $C' \cap D_1(A_0) \cap \ldots \cap D_1(A_{n-1})$ is stationary. So, since the proposition holds for n = 2, the set $D_1(C' \cap D_1(A_0) \cap \ldots \cap D_1(A_{n-1})) \cap D_1(A_n)$ is also stationary. But clearly $D_1(C' \cap D_1(A_0) \cap \ldots \cap D_1(A_{n-1})) \cap D_1(A_n) \subseteq C' \cap D_1(A_0) \cap \ldots \cap D_1(A_n).$ A similar argument, relativized to any set A yields:

Proposition $D_2(A) = \{ \alpha : A \cap \alpha \text{ is } 2\text{-s-stationary in } \alpha \}.$

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

The τ_{ξ} topology

In order to analyse the topologies τ_{ξ} , for $\xi \geq 3$, note first the following general facts:

• For every
$$\xi' < \xi$$
 and every $A, B \subseteq \delta$,

$$D_{\xi'}(A) \cap D_{\xi}(B) = D_{\xi}(D_{\xi'}(A) \cap B).$$

3 For every ordinal ξ , the sets of the form

 $I \cap D_{\xi'}(A_0) \cap \ldots \cap D_{\xi'}(A_{n-1})$

where $l \in \mathcal{B}_0$, $n < \omega$, $\xi' < \xi$, and $A_i \subseteq \delta$, all i < n, form a base for τ_{ξ} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The τ_{ξ} topology

In order to analyse the topologies τ_{ξ} , for $\xi \geq 3$, note first the following general facts:

• For every
$$\xi' < \xi$$
 and every $A, B \subseteq \delta$,

$$D_{\xi'}(A) \cap D_{\xi}(B) = D_{\xi}(D_{\xi'}(A) \cap B).$$

2 For every ordinal ξ , the sets of the form

$$I \cap D_{\xi'}(A_0) \cap \ldots \cap D_{\xi'}(A_{n-1})$$

where $I \in \mathcal{B}_0$, $n < \omega$, $\xi' < \xi$, and $A_i \subseteq \delta$, all i < n, form a base for τ_{ξ} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

Characterizing non-isolated points

Theorem

1 For every ξ ,

$$D_{\xi}(A) = \{ \alpha : A \text{ is } \xi \text{-s-stationary in } \alpha \}.^{a}$$

e For every ξ and α , A is $\xi + 1$ -s-stationary in α if and only if $A \cap D_{\zeta}(S) \cap D_{\zeta}(T) \cap \alpha \neq \emptyset$ (equivalently, if and only if $A \cap D_{\zeta}(S) \cap D_{\zeta}(T)$ is ζ -s-stationary in α) for every $\zeta \leq \xi$ and every pair S, T of subsets of α that are ζ -s-stationary in α .

Sor every ξ and α, if A is ξ-s-stationary in α and A_i is ζ_i-s-stationary in α for some ζ_i < ξ, all i < n, then A ∩ D_{ζ0}(A₀) ∩ ... ∩ D_{ζn-1}(A_{n-1}) is ξ-s-stationary in α.

^aFor $\xi < \omega$, this is due independently to L. Beklemishev (Unpublished).

Characterizing non-isolated points

Theorem

1 For every ξ ,

$$D_{\xi}(A) = \{ \alpha : A \text{ is } \xi \text{-s-stationary in } \alpha \}.^{a}$$

- **3** For every ξ and α , A is $\xi + 1$ -s-stationary in α if and only if $A \cap D_{\zeta}(S) \cap D_{\zeta}(T) \cap \alpha \neq \emptyset$ (equivalently, if and only if $A \cap D_{\zeta}(S) \cap D_{\zeta}(T)$ is ζ -s-stationary in α) for every $\zeta \leq \xi$ and every pair S, T of subsets of α that are ζ -s-stationary in α .
- Sor every ξ and α, if A is ξ-s-stationary in α and A_i is ζ_i-s-stationary in α for some ζ_i < ξ, all i < n, then A ∩ D_{ζ0}(A₀) ∩ . . . ∩ D_{ζn-1}(A_{n-1}) is ξ-s-stationary in α.

^aFor $\xi < \omega$, this is due independently to L. Beklemishev (Unpublished).

Characterizing non-isolated points

Theorem

• For every ξ ,

$$D_{\xi}(A) = \{ \alpha : A \text{ is } \xi \text{-s-stationary in } \alpha \}.^{a}$$

3 For every ξ and α , A is $\xi + 1$ -s-stationary in α if and only if $A \cap D_{\zeta}(S) \cap D_{\zeta}(T) \cap \alpha \neq \emptyset$ (equivalently, if and only if $A \cap D_{\zeta}(S) \cap D_{\zeta}(T)$ is ζ -s-stationary in α) for every $\zeta \leq \xi$ and every pair S, T of subsets of α that are ζ -s-stationary in α .

For every ξ and α, if A is ξ-s-stationary in α and A_i is ζ_i-s-stationary in α for some ζ_i < ξ, all i < n, then A ∩ D_{ζ0}(A₀) ∩ ... ∩ D_{ζn-1}(A_{n-1}) is ξ-s-stationary in α.

^aFor $\xi < \omega$, this is due independently to L. Beklemishev (Unpublished).

Taking $A = \delta$ in (1) above, we obtain the following

Corollary

For every ξ , an ordinal $\alpha < \delta$ is not isolated in the τ_{ξ} topology if and only if α is ξ -s-stationary.

< A > <

Taking $A = \delta$ in (1) above, we obtain the following

Corollary

For every ξ , an ordinal $\alpha < \delta$ is not isolated in the τ_{ξ} topology if and only if α is ξ -s-stationary.

< A > <

For each limit ordinal α and each ξ , let NS_{α}^{ξ} be the set of non- ξ -s-stationary subsets of α .

Thus, if α has uncountable cofinality, NS^1_{α} is the ideal of non-stationary subsets of α and $(NS^1_{\alpha})^*$ is the club filter over α .

Notice that $\zeta \leq \xi$ implies $NS_{\alpha}^{\zeta} \subseteq NS_{\alpha}^{\xi}$ and $(NS_{\alpha}^{\zeta})^* \subseteq (NS_{\alpha}^{\xi})^*$.

Also note that $A \subseteq \alpha$ belongs to $(NS_{\alpha}^{\xi})^*$ if and only if for some $\zeta < \xi$ and some ζ -s-stationary sets $S, T \subseteq \alpha$, the set $D_{\zeta}(S) \cap D_{\zeta}(T) \cap \alpha$ is contained in A. In particular, if $S \subseteq \alpha$ is ζ -s-stationary, with $\zeta < \xi$, then $D_{\zeta}(S) \cap \alpha \in (NS_{\alpha}^{\xi})^*$.

イロト イボト イヨト イヨト

For each limit ordinal α and each ξ , let NS_{α}^{ξ} be the set of non- ξ -s-stationary subsets of α .

Thus, if α has uncountable cofinality, NS^1_{α} is the ideal of non-stationary subsets of α and $(NS^1_{\alpha})^*$ is the club filter over α .

Notice that $\zeta \leq \xi$ implies $NS_{\alpha}^{\zeta} \subseteq NS_{\alpha}^{\xi}$ and $(NS_{\alpha}^{\zeta})^* \subseteq (NS_{\alpha}^{\xi})^*$.

Also note that $A \subseteq \alpha$ belongs to $(NS_{\alpha}^{\xi})^*$ if and only if for some $\zeta < \xi$ and some ζ -s-stationary sets $S, T \subseteq \alpha$, the set $D_{\zeta}(S) \cap D_{\zeta}(T) \cap \alpha$ is contained in A. In particular, if $S \subseteq \alpha$ is ζ -s-stationary, with $\zeta < \xi$, then $D_{\zeta}(S) \cap \alpha \in (NS_{\alpha}^{\xi})^*$.

イロト 不得 トイヨト イヨト 二日

For each limit ordinal α and each ξ , let NS_{α}^{ξ} be the set of non- ξ -s-stationary subsets of α .

Thus, if α has uncountable cofinality, NS^1_{α} is the ideal of non-stationary subsets of α and $(NS^1_{\alpha})^*$ is the club filter over α .

Notice that $\zeta \leq \xi$ implies $NS_{\alpha}^{\zeta} \subseteq NS_{\alpha}^{\xi}$ and $(NS_{\alpha}^{\zeta})^* \subseteq (NS_{\alpha}^{\xi})^*$.

Also note that $A \subseteq \alpha$ belongs to $(NS_{\alpha}^{\xi})^*$ if and only if for some $\zeta < \xi$ and some ζ -s-stationary sets $S, T \subseteq \alpha$, the set $D_{\zeta}(S) \cap D_{\zeta}(T) \cap \alpha$ is contained in A. In particular, if $S \subseteq \alpha$ is ζ -s-stationary, with $\zeta < \xi$, then $D_{\zeta}(S) \cap \alpha \in (NS_{\alpha}^{\xi})^*$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

For each limit ordinal α and each ξ , let NS_{α}^{ξ} be the set of non- ξ -s-stationary subsets of α .

Thus, if α has uncountable cofinality, NS^1_{α} is the ideal of non-stationary subsets of α and $(NS^1_{\alpha})^*$ is the club filter over α .

Notice that $\zeta \leq \xi$ implies $NS_{\alpha}^{\zeta} \subseteq NS_{\alpha}^{\xi}$ and $(NS_{\alpha}^{\zeta})^* \subseteq (NS_{\alpha}^{\xi})^*$.

Also note that $A \subseteq \alpha$ belongs to $(NS_{\alpha}^{\xi})^*$ if and only if for some $\zeta < \xi$ and some ζ -s-stationary sets $S, T \subseteq \alpha$, the set $D_{\zeta}(S) \cap D_{\zeta}(T) \cap \alpha$ is contained in A. In particular, if $S \subseteq \alpha$ is ζ -s-stationary, with $\zeta < \xi$, then $D_{\zeta}(S) \cap \alpha \in (NS_{\alpha}^{\xi})^*$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Theorem

For every ξ , a limit ordinal α is ξ -s-stationary if and only if NS_{α}^{ξ} is a proper ideal, hence if and only if $(NS_{\alpha}^{\xi})^*$ is a proper filter.

< A > <

Proof.

Assume α is ξ -s-stationary (hence $\alpha \notin NS_{\alpha}^{\xi}$) and let us show that NS_{α}^{ξ} is an ideal. For $\xi = 0$ this is clear. So, suppose $\xi > 0$ and $A, B \in NS_{\alpha}^{\xi}$. There exist $\zeta_A, \zeta_B < \xi$, and there exist sets $S_A, T_A \subseteq \alpha$ that are ζ_A -s-stationary in α , and sets $S_B, T_B \subseteq \alpha$ that are ζ_B -s-stationary in α , such that $D_{\zeta_A}(S_A) \cap D_{\zeta_A}(T_A) \cap A = D_{\zeta_B}(S_B) \cap D_{\zeta_b}(T_B) \cap B = \emptyset$. Hence,

 $(D_{\zeta_A}(S_A) \cap D_{\zeta_A}(T_A) \cap D_{\zeta_B}(S_B) \cap D_{\zeta_B}(T_B)) \cap (A \cup B) = \emptyset.$

The set $X := D_{\zeta_A}(S_A) \cap D_{\zeta_A}(T_A) \cap D_{\zeta_B}(S_B) \cap D_{\zeta_B}(T_B)$ is $max{\zeta_A, \zeta_B}$ -s-stationary in α . Now notice that

 $D_{max\{\zeta_A,\zeta_B\}}(X)\subseteq X$

and so we have

$$D_{max\{\zeta_A,\zeta_B\}}(X)\cap\alpha\cap(A\cup B)=\emptyset$$

which witnesses that $A \cup B \in NS^{\xi}_{\alpha}$.

Continued.

For the converse, assume NS_{α}^{ξ} is a proper ideal.

Take any A and B ζ -s-stationary subsets of α , for some $\zeta < \xi$. Then $D_{\zeta}(A) \cap \alpha$ and $D_{\zeta}(B) \cap \alpha$ are in $(NS_{\alpha}^{\xi})^*$. Moreover, if $S, T \subseteq \alpha$ are any ζ' -s-stationary sets, for some $\zeta' < \xi$, then also $D_{\zeta'}(S) \cap \alpha$ and $D_{\zeta'}(T) \cap \alpha$ belong to $(NS_{\alpha}^{\xi})^*$. Hence, since $(NS_{\alpha}^{\xi})^*$ is a filter,

 $D_{\zeta}(A) \cap D_{\zeta}(B) \cap D_{\zeta'}(S) \cap D_{\zeta'}(T) \cap \alpha \in (NS^{\xi}_{\alpha})^*$

which implies, since $(NS_{\alpha}^{\xi})^*$ is proper, that $D_{\zeta}(A) \cap D_{\zeta}(B) \cap D_{\zeta'}(S) \cap D_{\zeta'}(T) \cap \alpha \neq \emptyset$. This shows that $D_{\zeta}(A) \cap D_{\zeta}(B)$ is ξ -s-stationary in α . Since A and B were arbitrary, this implies α is ξ -s-stationary.

(ロ) (同) (三) (三) 三

Summary

The following are equivalent for every limit ordinal α and every $\xi > 0$:

() α is a non-isolated point in the τ_{ξ} topology.

2 α is ξ -s-stationary.

• NS^{ξ}_{α} is a proper ideal.

イロト 不得 トイヨト イヨト 二日

Summary

The following are equivalent for every limit ordinal α and every $\xi > 0$:

- **(**) α is a non-isolated point in the τ_{ξ} topology.
- **2** α is ξ -s-stationary.
- NS^{ξ}_{α} is a proper ideal.

イロト 不得 トイヨト イヨト 二日

Summary

The following are equivalent for every limit ordinal α and every $\xi > 0$:

- **(**) α is a non-isolated point in the τ_{ξ} topology.
- **2** α is ξ -s-stationary.
- **3** NS^{ξ}_{α} is a proper ideal.

3

イロト イボト イヨト イヨト

Indescribable cardinals

Recall that a formula of second-order logic is Σ_0^1 (or Π_0^1) if it does not have quantifiers of second order, but it may have any finite number of first-order quantifiers and free first-order and second-order variables.

Definition

For ξ any ordinal, we say that a formula is $\Sigma^1_{\xi+1}$ if it is of the form

$$\exists X_0,\ldots,X_k\varphi(X_0,\ldots,X_k)$$

where $\varphi(X_0, \ldots, X_k)$ is Π^1_{ξ} . And a formula is $\Pi^1_{\xi+1}$ if it is of the form

$$\forall X_0,\ldots,X_k\varphi(X_0,\ldots,X_k)$$

where $\varphi(X_0,\ldots,X_k)$ is $\Sigma^1_{\mathcal{E}}$.

・ロット (雪) (日) (日)

Indescribable cardinals

Recall that a formula of second-order logic is Σ_0^1 (or Π_0^1) if it does not have quantifiers of second order, but it may have any finite number of first-order quantifiers and free first-order and second-order variables.

Definition

For ξ any ordinal, we say that a formula is $\Sigma^1_{\xi+1}$ if it is of the form

$$\exists X_0,\ldots,X_k\varphi(X_0,\ldots,X_k)$$

where $\varphi(X_0, \ldots, X_k)$ is Π^1_{ξ} . And a formula is $\Pi^1_{\xi+1}$ if it is of the form

$$\forall X_0,\ldots,X_k\varphi(X_0,\ldots,X_k)$$

where $\varphi(X_0,\ldots,X_k)$ is Σ^1_{ξ} .

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Definition

If ξ is a limit ordinal, then we say that a formula is Π^1_{ξ} if it is of the form

$$\bigwedge_{\zeta < \xi} \varphi_{\zeta}$$

where φ_{ζ} is Π^{1}_{ζ} , all $\zeta < \xi$, and it has only finitely-many free second-order variables. And we say that a formula is Σ^{1}_{ξ} if it is of the form

 $\bigvee_{\zeta<\xi}\varphi_{\zeta}$

where φ_{ζ} is Σ_{ζ}^{1} , all $\zeta < \xi$, and it has only finitely-many free second-order variables.

Definition

A cardinal κ is Π^1_{ξ} -indescribable if for all subsets $A \subseteq V_{\kappa}$ and every Π^1_{ξ} sentence φ , if

 $\langle V_{\kappa}, \in, A \rangle \models \varphi$

then there is some $\lambda < \kappa$ such that

 $\langle V_{\lambda}, \in, A \cap V_{\lambda} \rangle \models \varphi.$

э

くロト く得ト くほト くほとう

Theorem

Every Π^1_{ξ} -indescribable cardinal is $(\xi + 1)$ -s-stationary. Hence, if ξ is a limit ordinal and a cardinal κ is Π^1_{ζ} -indescribable for all $\zeta < \xi$, then κ is ξ -s-stationary.

< 🗇 🕨 <

Proof.

Let κ be an infinite cardinal. Clearly, the fact that a set $A \subseteq \kappa$ is 0-s-stationary (i.e., unbounded) in κ can be expressed as a Π_0^1 sentence $\varphi_0(A)$ over $\langle V_{\kappa}, \in, A \rangle$. Inductively, for every $\xi > 0$, the fact that a set $A \subseteq \kappa$ is ξ -s-stationary in κ can be expressed by a Π_{ξ}^1 sentence φ_{ξ} over $\langle V_{\kappa}, \in, A \rangle$. Namely,

$$\bigwedge_{\zeta<\xi}(A ext{ is } \zeta ext{-s-stationary})$$

in the case ξ is a limit ordinal, and by the sentence

 $\bigwedge_{\zeta < \xi - 1} (A \text{ is } \zeta \text{-s-stationary}) \land$

 $orall S, T(S,T ext{ are } (\xi-1) ext{-s-stationary in }\kappa o$

 $\exists \beta \in A(S \text{ and } T \text{ are } (\xi - 1) \text{-s-stationary in } \beta))$

which is easily seen to be equivalent to a Π^1_{ξ} sentence, in the case ξ is a successor ordinal.

Continued.

Now suppose κ is Π^1_{ξ} -indescribable, and suppose that A and B are ζ -s-stationary subsets of κ , for some $\zeta \leq \xi$. Thus,

$$\langle V_{\kappa}, \in, A, B \rangle \models \varphi_{\zeta}[A] \land \varphi_{\zeta}[B].$$

By the $\Pi^1_{\mathcal{C}}$ -indescribability of κ there exists $\beta < \kappa$ such that

$$\langle V_{\beta}, \in, A \cap \beta, B \cap \beta \rangle \models \varphi_{\zeta}[A \cap \beta] \land \varphi_{\zeta}[B \cap \beta]$$

which implies that A and B are ζ -s-stationary in β . Hence κ is $(\xi + 1)$ -s-reflecting.

- 4 同 ト 4 ヨ ト

Reflection and indescribability in L

Theorem (J.B.-M. Magidor-H. Sakai, 2013; J.B., 2015)

Assume V = L. For every $\xi > 0$, a regular cardinal is $(\xi + 1)$ -stationary if and only if it is Π^1_{ξ} -indescribable, hence if and only if it is $(\xi + 1)$ -s-stationary.^{ab}

^a*Reflection and indescribability in the constructible universe*. Israel J. of Math. Vol. 208, Issue 1 (2015)

^bDerived topologies on ordinals and stationary reflection. Preprint (2015)

The proof actually shows the following:

Theorem

Assume V = L. Suppose $\xi > 0$ and κ is a regular $(\xi + 1)$ -stationary cardinal. Then for every $A \subseteq \kappa$ and every Π^1_{ξ} sentence Ψ , if $\langle L_{\kappa}, \in, A \rangle \models \Psi$, then there exists a ξ -stationary $S \subseteq \kappa$ such that Ψ reflects to every ordinal λ on which S is ξ -stationary.

Theorem

 $CON(\exists \kappa < \lambda \ (\kappa \ is \ \Pi^1_{\xi} \text{-indescribable} \land \lambda \ is \ inaccessible)) \ implies$ $<math>CON(\tau_{\xi+1} \ is \ non-discrete \land \tau_{\xi+2} \ is \ discrete).$

Proof.

Let κ be Π_{ξ}^{1} -indescribable, and let $\lambda > \kappa$ be inaccessible. In L, κ is Π_{ξ}^{1} -indescribable and λ is inaccessible. So, in L, let κ_{0} be the least Π_{ξ}^{1} -indescribable cardinal, and let λ_{0} be the least inaccessible cardinal above κ_{0} . Then $L_{\lambda_{0}}$ is a model of ZFC in which κ_{0} is Π_{ξ}^{1} -indescribable and no regular cardinal greater than κ_{0} is 2-stationary. The reason is that if α is a regular cardinal greater than κ_{0} , then $\alpha = \beta^{+}$, for some cardinal β . And since Jensen's principle \square_{β} holds, there exists a stationary subset of α that does not reflect.

<ロト < 同ト < ヨト < ヨト

Theorem

 $CON(\exists \kappa < \lambda \ (\kappa \ is \ \Pi^1_{\xi} \text{-indescribable} \land \lambda \ is \ inaccessible)) \ implies$ $<math>CON(\tau_{\xi+1} \ is \ non-discrete \land \tau_{\xi+2} \ is \ discrete).$

Proof.

Let κ be Π^1_{ξ} -indescribable, and let $\lambda > \kappa$ be inaccessible. In L, κ is Π^1_{ξ} -indescribable and λ is inaccessible. So, in L, let κ_0 be the least Π^1_{ξ} -indescribable cardinal, and let λ_0 be the least inaccessible cardinal above κ_0 . Then L_{λ_0} is a model of ZFC in which κ_0 is Π^1_{ξ} -indescribable and no regular cardinal greater than κ_0 is 2-stationary. The reason is that if α is a regular cardinal greater than κ_0 , then $\alpha = \beta^+$, for some cardinal β . And since Jensen's principle \square_{β} holds, there exists a stationary subset of α that does not reflect.

Let us write:

 $d_{\xi}(A) := \{ \alpha : A \cap \alpha \text{ is } \xi \text{-stationary in } \alpha \}$

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal κ is a reflection cardinal if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^+ \quad \Rightarrow \quad d_1(X) \in \mathcal{I}^+.$$

Note: if κ is 2-stationary, then NS_{κ} is the smallest such ideal. κ is weakly compact \Rightarrow many reflection cardinals below κ .

- 4 同 ト 4 ヨ ト 4 ヨ ト

Let us write:

$$d_{\xi}(A) := \{ \alpha : A \cap \alpha \text{ is } \xi \text{-stationary in } \alpha \}$$

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal κ is a reflection cardinal if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^+ \quad \Rightarrow \quad d_1(X) \in \mathcal{I}^+.$$

Note: if κ is 2-stationary, then NS_{κ} is the smallest such ideal. κ is weakly compact \Rightarrow many reflection cardinals below κ .

< 同 > < 国 > < 国 >

Let us write:

$$d_{\xi}(A) := \{ \alpha : A \cap \alpha \text{ is } \xi \text{-stationary in } \alpha \}$$

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal κ is a reflection cardinal if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^+ \quad \Rightarrow \quad d_1(X) \in \mathcal{I}^+.$$

Note: if κ is 2-stationary, then NS_{κ} is the smallest such ideal. κ is weakly compact \Rightarrow many reflection cardinals below κ .

- 4 同 ト 4 ヨ ト 4 ヨ ト

Let us write:

$$d_{\xi}(A) := \{ \alpha : A \cap \alpha \text{ is } \xi \text{-stationary in } \alpha \}$$

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal κ is a reflection cardinal if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^+ \Rightarrow d_1(X) \in \mathcal{I}^+.$$

Note: if κ is 2-stationary, then NS_{κ} is the smallest such ideal.

 κ is weakly compact \Rightarrow many reflection cardinals below κ .

- 4 周 ト 4 ヨ ト 4 ヨ ト

Let us write:

$$d_{\xi}(A) := \{ \alpha : A \cap \alpha \text{ is } \xi \text{-stationary in } \alpha \}$$

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal κ is a reflection cardinal if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^+ \Rightarrow d_1(X) \in \mathcal{I}^+.$$

Note: if κ is 2-stationary, then NS_{κ} is the smallest such ideal. κ is weakly compact \Rightarrow many reflection cardinals below κ .

Theorem (A. H. Mekler-S. Shelah, 1989)

If κ is a reflection cardinal in L, then in some generic extension of L that preserves cardinals, κ is 2-stationary. (In fact, the set Reg $\cap \kappa$ of regular cardinals below κ is 2-stationary).

Corollary

The following are equiconsistent:

- ① There exists a reflection cardinal.
- **2** There exists a 2-stationary cardinal.
- There exists a regular cardinal κ such that every κ-free abelian group is κ⁺-free.

< ロ > < 同 > < 三 > < 三 >

Theorem (A. H. Mekler-S. Shelah, 1989)

If κ is a reflection cardinal in L, then in some generic extension of L that preserves cardinals, κ is 2-stationary. (In fact, the set Reg $\cap \kappa$ of regular cardinals below κ is 2-stationary).

Corollary

The following are equiconsistent:

- **1** There exists a reflection cardinal.
- 2 There exists a 2-stationary cardinal.
- There exists a regular cardinal κ such that every κ-free abelian group is κ⁺-free.

イロト イポト イラト イラト

Recall that a regular cardinal κ is greatly Mahlo if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that $Reg \cap \kappa \in \mathcal{I}^*$, and for every $X \subseteq \kappa$,

$$X\in \mathcal{I}^* \quad \Rightarrow \quad d_1(X)\in \mathcal{I}^*.$$

Theorem (A. H. Mekler-S. Shelah, 1989)

In L, if κ is at most the first greatly-Mahlo cardinal, then κ is not a reflection cardinal.

Thus, in *L*, the first reflection cardinal is strictly between the first greatly-Mahlo and the first weakly-compact.

< ロ > < 同 > < 回 > < 回 >

Recall that a regular cardinal κ is greatly Mahlo if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that $Reg \cap \kappa \in \mathcal{I}^*$, and for every $X \subseteq \kappa$,

$$X\in \mathcal{I}^* \quad \Rightarrow \quad d_1(X)\in \mathcal{I}^*.$$

Theorem (A. H. Mekler-S. Shelah, 1989)

In L, if κ is at most the first greatly-Mahlo cardinal, then κ is not a reflection cardinal.

Thus, in L, the first reflection cardinal is strictly between the first greatly-Mahlo and the first weakly-compact.

< ロ > < 同 > < 三 > < 三 >

Recall that a regular cardinal κ is greatly Mahlo if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that $Reg \cap \kappa \in \mathcal{I}^*$, and for every $X \subseteq \kappa$,

$$X\in \mathcal{I}^* \quad \Rightarrow \quad d_1(X)\in \mathcal{I}^*.$$

Theorem (A. H. Mekler-S. Shelah, 1989)

In L, if κ is at most the first greatly-Mahlo cardinal, then κ is not a reflection cardinal.

Thus, in L, the first reflection cardinal is strictly between the first greatly-Mahlo and the first weakly-compact.

くロト く得ト くヨト くヨト

We would like to prove analogous results for the *n*-stationay sets. So, let's define:

Definition

For n > 0, a regular uncountable cardinal κ is an *n*-reflection cardinal if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^+ \quad \Rightarrow \quad d_n(X) \in \mathcal{I}^+.$$

Note: If κ is *n*-s-stationary, then the set NS_{κ}^{n} of non-*n*-s-stationary subsets of κ is the least such ideal.

・ 同 ト ・ ヨ ト ・ ヨ ト

We would like to prove analogous results for the *n*-stationay sets. So, let's define:

Definition

For n > 0, a regular uncountable cardinal κ is an *n*-reflection cardinal if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^+ \quad \Rightarrow \quad d_n(X) \in \mathcal{I}^+.$$

Note: If κ is *n*-s-stationary, then the set NS_{κ}^{n} of non-*n*-s-stationary subsets of κ is the least such ideal.

・ 同 ト ・ ヨ ト ・ ヨ ト

We would like to prove analogous results for the n-stationay sets. So, let's define:

Definition

For n > 0, a regular uncountable cardinal κ is an *n*-reflection cardinal if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X\in \mathcal{I}^+ \quad \Rightarrow \quad d_n(X)\in \mathcal{I}^+.$$

Note: If κ is *n*-s-stationary, then the set NS_{κ}^{n} of non-*n*-s-stationary subsets of κ is the least such ideal.

- 4 同 1 4 三 1 4 三 1

We would like to prove analogous results for the n-stationay sets. So, let's define:

Definition

For n > 0, a regular uncountable cardinal κ is an *n*-reflection cardinal if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^+ \quad \Rightarrow \quad d_n(X) \in \mathcal{I}^+.$$

Note: If κ is *n*-s-stationary, then the set NS_{κ}^{n} of non-*n*-s-stationary subsets of κ is the least such ideal.

(4月) (日) (日)

Theorem (J.B., M. Magidor, and S. Mancilla, 2015)

If κ is a 2-reflection cardinal in L, then in some generic extension of L that preserves cardinals, κ is 3-stationary. (In fact, the set Reg $\cap \kappa$ of regular cardinals below κ is 3-stationary).

Similar arguments should yield a similar result for n > 3.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Theorem (J.B., M. Magidor, and S. Mancilla, 2015)

If κ is a 2-reflection cardinal in L, then in some generic extension of L that preserves cardinals, κ is 3-stationary. (In fact, the set Reg $\cap \kappa$ of regular cardinals below κ is 3-stationary).

Similar arguments should yield a similar result for n > 3.

Definition

A regular cardinal κ is *n*-greatly Mahlo if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that $Reg \cap \kappa \in \mathcal{I}^*$, and for every $X \subseteq \kappa$,

 $X \in \mathcal{I}^* \quad \Rightarrow \quad d_n(X) \in \mathcal{I}^*.$

Theorem (J.B. and S. Mancilla, 2014)

In L, if κ is at most the first n-greatly-Mahlo cardinal, then κ is not an n-reflection cardinal.

Thus, in L, the first *n*-reflection cardinal is strictly between the first *n*-greatly-Mahlo and the first Π_{n-1}^1 -indescribable.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Definition

A regular cardinal κ is *n*-greatly Mahlo if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that $Reg \cap \kappa \in \mathcal{I}^*$, and for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^* \quad \Rightarrow \quad d_n(X) \in \mathcal{I}^*.$$

Theorem (J.B. and S. Mancilla, 2014)

In L, if κ is at most the first n-greatly-Mahlo cardinal, then κ is not an n-reflection cardinal.

Thus, in L, the first *n*-reflection cardinal is strictly between the first *n*-greatly-Mahlo and the first Π_{n-1}^{1} -indescribable.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Definition

A regular cardinal κ is *n*-greatly Mahlo if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that $Reg \cap \kappa \in \mathcal{I}^*$, and for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^* \quad \Rightarrow \quad d_n(X) \in \mathcal{I}^*.$$

Theorem (J.B. and S. Mancilla, 2014)

In L, if κ is at most the first n-greatly-Mahlo cardinal, then κ is not an n-reflection cardinal.

Thus, in *L*, the first *n*-reflection cardinal is strictly between the first *n*-greatly-Mahlo and the first $\prod_{n=1}^{1}$ -indescribable.

< ロ > < 同 > < 三 > < 三 >

Magidor¹ shows that the following are equiconsistent:

- There exists a 2-s-stationary cardinal (i.e., a cardinal that reflects simultaneously pairs of stationary sets).
- Intere exists a weakly-compact cardinal.

Conjecture

The following should be equiconsistent for every n > 0:

- There exists an (n + 1)-s-stationary cardinal.
- 2 There exists an Π^1_n -indescribable cardinal.

Magidor¹ shows that the following are equiconsistent:

- There exists a 2-s-stationary cardinal (i.e., a cardinal that reflects simultaneously pairs of stationary sets).
- Intere exists a weakly-compact cardinal.

Conjecture

The following should be equiconsistent for every n > 0:

- There exists an (n + 1)-s-stationary cardinal.
- 2 There exists an Π_n^1 -indescribable cardinal.