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Introduction: derived topologies and hyperstationary sets

Recall from Lecture I

We are looking at ordinal GLP-spaces, i.e., polytopological spaces of the
form (δ, (τζ)ζ<ξ), where τ0 is the interval topology and τζ+1 is generated
by τζ together with the sets

Dζ(A) := {α : α is a τζ limit point of A}

all A ⊆ δ.

τ1 is the club topology. The non-isolated points are those α with
uncountable cofinality.

We observed that D1(A) = {α : A ∩ α is stationary in α}.
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Introduction: derived topologies and hyperstationary sets

Recall also the following definition

Definition
We say that A ⊆ δ is 0-simultaneously-stationary in α (0-s-stationary in α,
for short) if and only if A ∩ α is unbounded in α.
For ξ > 0, we say that A ⊆ δ is ξ-simultaneously-stationary in α
(ξ-s-stationary in α, for short) if and only for every ζ < ξ, every pair of
ζ-s-stationary subsets B,C ⊆ α simultaneously ζ-s-reflect at some β ∈ A,
i.e., B ∩ β and C ∩ β are ζ-s-stationary in β.

A is 2-s-stationary in α ⇔ every pair of stationary subsets of α
simultaneously reflect to some β ∈ A.
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Introduction: derived topologies and hyperstationary sets

Proposition
α is not isolated in the τ2 topology if and only if α is 2-s-stationary

Proof.
If α is not 2-s-stationary, there are stationary A,B ⊆ α such that
D1(A) ∩ D1(B) = {α}, hence α is isolated.
Now suppose α is 2-s-stat. and α ∈ U = C ∩ D1(A0) ∩ . . . ∩ D1(An−1),
where C ⊆ α is club. We claim that U contains some ordinal other than
α. It is enough to show that D1(A0) ∩ . . . ∩ D1(An−1) is stationary.
Suppose first that n = 2. Fix any club C ′ ⊆ α. The sets C ′ ∩ A0 and
C ′ ∩ A1 are stationary in α, and therefore they simultaneously reflect at
some β < α. Thus β ∈ C ′ ∩ D1(A0) ∩ D1(A1).
Now, assume it holds for n and let us show it holds for n + 1. Fix a club
C ′ ⊆ α. By the ind. hyp., C ′ ∩ D1(A0) ∩ . . . ∩ D1(An−1) is stationary. So,
since the proposition holds for n = 2, the set
D1(C ′ ∩ D1(A0) ∩ . . . ∩ D1(An−1)) ∩ D1(An) is also stationary. But clearly
D1(C ′ ∩D1(A0)∩ . . .∩D1(An−1))∩D1(An) ⊆ C ′ ∩D1(A0)∩ . . .∩D1(An).
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Introduction: derived topologies and hyperstationary sets

A similar argument, relativized to any set A yields:

Proposition
D2(A) = {α : A ∩ α is 2-s-stationary in α}.
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Introduction: derived topologies and hyperstationary sets

The τξ topology

In order to analyse the topologies τξ, for ξ ≥ 3, note first the following
general facts:

1 For every ξ′ < ξ and every A,B ⊆ δ,

Dξ′(A) ∩ Dξ(B) = Dξ(Dξ′(A) ∩ B).

2 For every ordinal ξ, the sets of the form

I ∩ Dξ′(A0) ∩ . . . ∩ Dξ′(An−1)

where I ∈ B0, n < ω, ξ′ < ξ, and Ai ⊆ δ, all i < n, form a base for τξ.
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Introduction: derived topologies and hyperstationary sets

Characterizing non-isolated points

Theorem

1 For every ξ,

Dξ(A) = {α : A is ξ-s-stationary in α}.a

2 For every ξ and α, A is ξ + 1-s-stationary in α if and only if
A ∩ Dζ(S) ∩ Dζ(T ) ∩ α 6= ∅ (equivalently, if and only if
A ∩ Dζ(S) ∩ Dζ(T ) is ζ-s-stationary in α) for every ζ ≤ ξ and every
pair S, T of subsets of α that are ζ-s-stationary in α.

3 For every ξ and α, if A is ξ-s-stationary in α and Ai is ζi -s-stationary
in α for some ζi < ξ, all i < n, then A ∩ Dζ0(A0) ∩ . . . ∩ Dζn−1(An−1)
is ξ-s-stationary in α.

aFor ξ < ω, this is due independently to L. Beklemishev (Unpublished).
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Introduction: derived topologies and hyperstationary sets

Taking A = δ in (1) above, we obtain the following

Corollary

For every ξ, an ordinal α < δ is not isolated in the τξ topology if and only
if α is ξ-s-stationary.
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Introduction: derived topologies and hyperstationary sets

The ideal of non-ξ-s-stationary sets

For each limit ordinal α and each ξ, let NSξα be the set of
non-ξ-s-stationary subsets of α.

Thus, if α has uncountable cofinality, NS1
α is the ideal of non-stationary

subsets of α and (NS1
α)∗ is the club filter over α.

Notice that ζ ≤ ξ implies NSζα ⊆ NSξα and (NSζα)∗ ⊆ (NSξα)∗.

Also note that A ⊆ α belongs to (NSξα)∗ if and only if for some ζ < ξ and
some ζ-s-stationary sets S,T ⊆ α, the set Dζ(S)∩Dζ(T )∩α is contained
in A. In particular, if S ⊆ α is ζ-s-stationary, with ζ < ξ, then
Dζ(S) ∩ α ∈ (NSξα)∗.

Joan Bagaria (ICREA & UB) An Introduction to Hyperstationary Sets 26 / 46



Introduction: derived topologies and hyperstationary sets

The ideal of non-ξ-s-stationary sets

For each limit ordinal α and each ξ, let NSξα be the set of
non-ξ-s-stationary subsets of α.

Thus, if α has uncountable cofinality, NS1
α is the ideal of non-stationary

subsets of α and (NS1
α)∗ is the club filter over α.

Notice that ζ ≤ ξ implies NSζα ⊆ NSξα and (NSζα)∗ ⊆ (NSξα)∗.

Also note that A ⊆ α belongs to (NSξα)∗ if and only if for some ζ < ξ and
some ζ-s-stationary sets S,T ⊆ α, the set Dζ(S)∩Dζ(T )∩α is contained
in A. In particular, if S ⊆ α is ζ-s-stationary, with ζ < ξ, then
Dζ(S) ∩ α ∈ (NSξα)∗.

Joan Bagaria (ICREA & UB) An Introduction to Hyperstationary Sets 26 / 46



Introduction: derived topologies and hyperstationary sets

The ideal of non-ξ-s-stationary sets

For each limit ordinal α and each ξ, let NSξα be the set of
non-ξ-s-stationary subsets of α.

Thus, if α has uncountable cofinality, NS1
α is the ideal of non-stationary

subsets of α and (NS1
α)∗ is the club filter over α.

Notice that ζ ≤ ξ implies NSζα ⊆ NSξα and (NSζα)∗ ⊆ (NSξα)∗.

Also note that A ⊆ α belongs to (NSξα)∗ if and only if for some ζ < ξ and
some ζ-s-stationary sets S,T ⊆ α, the set Dζ(S)∩Dζ(T )∩α is contained
in A. In particular, if S ⊆ α is ζ-s-stationary, with ζ < ξ, then
Dζ(S) ∩ α ∈ (NSξα)∗.

Joan Bagaria (ICREA & UB) An Introduction to Hyperstationary Sets 26 / 46



Introduction: derived topologies and hyperstationary sets

The ideal of non-ξ-s-stationary sets

For each limit ordinal α and each ξ, let NSξα be the set of
non-ξ-s-stationary subsets of α.

Thus, if α has uncountable cofinality, NS1
α is the ideal of non-stationary

subsets of α and (NS1
α)∗ is the club filter over α.

Notice that ζ ≤ ξ implies NSζα ⊆ NSξα and (NSζα)∗ ⊆ (NSξα)∗.

Also note that A ⊆ α belongs to (NSξα)∗ if and only if for some ζ < ξ and
some ζ-s-stationary sets S,T ⊆ α, the set Dζ(S)∩Dζ(T )∩α is contained
in A. In particular, if S ⊆ α is ζ-s-stationary, with ζ < ξ, then
Dζ(S) ∩ α ∈ (NSξα)∗.

Joan Bagaria (ICREA & UB) An Introduction to Hyperstationary Sets 26 / 46



Introduction: derived topologies and hyperstationary sets

Theorem
For every ξ, a limit ordinal α is ξ-s-stationary if and only if NSξα is a proper
ideal, hence if and only if (NSξα)∗ is a proper filter.
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Introduction: derived topologies and hyperstationary sets

Proof.
Assume α is ξ-s-stationary (hence α 6∈ NSξα) and let us show that NSξα is
an ideal. For ξ = 0 this is clear. So, suppose ξ > 0 and A,B ∈ NSξα.
There exist ζA, ζB < ξ, and there exist sets SA,TA ⊆ α that are
ζA-s-stationary in α, and sets SB,TB ⊆ α that are ζB-s-stationary in α,
such that DζA(SA) ∩ DζA(TA) ∩ A = DζB (SB) ∩ Dζb (TB) ∩ B = ∅. Hence,

(DζA(SA) ∩ DζA(TA) ∩ DζB (SB) ∩ DζB (TB)) ∩ (A ∪ B) = ∅.

The set X := DζA(SA) ∩ DζA(TA) ∩ DζB (SB) ∩ DζB (TB) is
max{ζA, ζB}-s-stationary in α. Now notice that

Dmax{ζA,ζB}(X ) ⊆ X

and so we have
Dmax{ζA,ζB}(X ) ∩ α ∩ (A ∪ B) = ∅

which witnesses that A ∪ B ∈ NSξα.
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Introduction: derived topologies and hyperstationary sets

Continued.
For the converse, assume NSξα is a proper ideal.
Take any A and B ζ-s-stationary subsets of α, for some ζ < ξ. Then
Dζ(A) ∩ α and Dζ(B) ∩ α are in (NSξα)∗. Moreover, if S,T ⊆ α are any
ζ ′-s-stationary sets, for some ζ ′ < ξ, then also Dζ′(S) ∩ α and Dζ′(T ) ∩ α
belong to (NSξα)∗. Hence, since (NSξα)∗ is a filter,

Dζ(A) ∩ Dζ(B) ∩ Dζ′(S) ∩ Dζ′(T ) ∩ α ∈ (NSξα)∗

which implies, since (NSξα)∗ is proper, that
Dζ(A) ∩ Dζ(B) ∩ Dζ′(S) ∩ Dζ′(T ) ∩ α 6= ∅. This shows that
Dζ(A) ∩ Dζ(B) is ξ-s-stationary in α. Since A and B were arbitrary, this
implies α is ξ-s-stationary.
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Introduction: derived topologies and hyperstationary sets

Summary

The following are equivalent for every limit ordinal α and every ξ > 0:

1 α is a non-isolated point in the τξ topology.

2 α is ξ-s-stationary.

3 NSξα is a proper ideal.
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Hyperstationary sets and indescribable cardinals

Indescribable cardinals

Recall that a formula of second-order logic is Σ1
0 (or Π1

0) if it does not
have quantifiers of second order, but it may have any finite number of
first-order quantifiers and free first-order and second-order variables.

Definition
For ξ any ordinal, we say that a formula is Σ1

ξ+1 if it is of the form

∃X0, . . . ,Xkϕ(X0, . . . ,Xk)

where ϕ(X0, . . . ,Xk) is Π1
ξ .

And a formula is Π1
ξ+1 if it is of the form

∀X0, . . . ,Xkϕ(X0, . . . ,Xk)

where ϕ(X0, . . . ,Xk) is Σ1
ξ .
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Hyperstationary sets and indescribable cardinals

Definition
If ξ is a limit ordinal, then we say that a formula is Π1

ξ if it is of the form∧
ζ<ξ

ϕζ

where ϕζ is Π1
ζ , all ζ < ξ, and it has only finitely-many free second-order

variables. And we say that a formula is Σ1
ξ if it is of the form∨

ζ<ξ

ϕζ

where ϕζ is Σ1
ζ , all ζ < ξ, and it has only finitely-many free second-order

variables.
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Hyperstationary sets and indescribable cardinals

Definition
A cardinal κ is Π1

ξ-indescribable if for all subsets A ⊆ Vκ and every Π1
ξ

sentence ϕ, if
〈Vκ,∈,A〉 |= ϕ

then there is some λ < κ such that

〈Vλ,∈,A ∩ Vλ〉 |= ϕ.
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Hyperstationary sets and indescribable cardinals

Theorem

Every Π1
ξ-indescribable cardinal is (ξ + 1)-s-stationary. Hence, if ξ is a

limit ordinal and a cardinal κ is Π1
ζ-indescribable for all ζ < ξ, then κ is

ξ-s-stationary.
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Hyperstationary sets and indescribable cardinals

Proof.
Let κ be an infinite cardinal. Clearly, the fact that a set A ⊆ κ is
0-s-stationary (i.e., unbounded) in κ can be expressed as a Π1

0 sentence
ϕ0(A) over 〈Vκ,∈,A〉. Inductively, for every ξ > 0, the fact that a set
A ⊆ κ is ξ-s-stationary in κ can be expressed by a Π1

ξ sentence ϕξ over
〈Vκ,∈,A〉. Namely, ∧

ζ<ξ

(A is ζ-s-stationary)

in the case ξ is a limit ordinal, and by the sentence∧
ζ<ξ−1

(A is ζ-s-stationary) ∧

∀S,T (S,T are (ξ − 1)-s-stationary in κ→

∃β ∈ A(S and T are (ξ − 1)-s-stationary in β))

which is easily seen to be equivalent to a Π1
ξ sentence, in the case ξ is a

successor ordinal.
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Hyperstationary sets and indescribable cardinals

Continued.
Now suppose κ is Π1

ξ-indescribable, and suppose that A and B are
ζ-s-stationary subsets of κ, for some ζ ≤ ξ. Thus,

〈Vκ,∈,A,B〉 |= ϕζ [A] ∧ ϕζ [B].

By the Π1
ζ-indescribability of κ there exists β < κ such that

〈Vβ,∈,A ∩ β,B ∩ β〉 |= ϕζ [A ∩ β] ∧ ϕζ [B ∩ β]

which implies that A and B are ζ-s-stationary in β. Hence κ is
(ξ + 1)-s-reflecting.
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Hyperstationary sets and indescribable cardinals

Reflection and indescribability in L

Theorem (J.B.-M. Magidor-H. Sakai, 2013; J.B., 2015)

Assume V = L. For every ξ > 0, a regular cardinal is (ξ + 1)-stationary if
and only if it is Π1

ξ-indescribable, hence if and only if it is
(ξ + 1)-s-stationary.ab

aReflection and indescribability in the constructible universe. Israel J. of
Math. Vol. 208, Issue 1 (2015)

bDerived topologies on ordinals and stationary reflection. Preprint (2015)

Joan Bagaria (ICREA & UB) An Introduction to Hyperstationary Sets 37 / 46



Hyperstationary sets and indescribable cardinals

The proof actually shows the following:

Theorem

Assume V = L. Suppose ξ > 0 and κ is a regular (ξ + 1)-stationary
cardinal. Then for every A ⊆ κ and every Π1

ξ sentence Ψ, if
〈Lκ,∈,A〉 |= Ψ, then there exists a ξ-stationary S ⊆ κ such that Ψ reflects
to every ordinal λ on which S is ξ-stationary.
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Hyperstationary sets and indescribable cardinals

Theorem
CON( ∃κ < λ (κ is Π1

ξ-indescribable ∧ λ is inaccessible)) implies
CON(τξ+1 is non-discrete ∧ τξ+2 is discrete).

Proof.
Let κ be Π1

ξ-indescribable, and let λ > κ be inaccessible. In L, κ is
Π1
ξ-indescribable and λ is inaccessible. So, in L, let κ0 be the least

Π1
ξ-indescribable cardinal, and let λ0 be the least inaccessible cardinal

above κ0. Then Lλ0 is a model of ZFC in which κ0 is Π1
ξ-indescribable and

no regular cardinal greater than κ0 is 2-stationary. The reason is that if α
is a regular cardinal greater than κ0, then α = β+, for some cardinal β.
And since Jensen’s principle �β holds, there exists a stationary subset of α
that does not reflect.
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CON( ∃κ < λ (κ is Π1
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CON(τξ+1 is non-discrete ∧ τξ+2 is discrete).

Proof.
Let κ be Π1

ξ-indescribable, and let λ > κ be inaccessible. In L, κ is
Π1
ξ-indescribable and λ is inaccessible. So, in L, let κ0 be the least

Π1
ξ-indescribable cardinal, and let λ0 be the least inaccessible cardinal

above κ0. Then Lλ0 is a model of ZFC in which κ0 is Π1
ξ-indescribable and

no regular cardinal greater than κ0 is 2-stationary. The reason is that if α
is a regular cardinal greater than κ0, then α = β+, for some cardinal β.
And since Jensen’s principle �β holds, there exists a stationary subset of α
that does not reflect.

Joan Bagaria (ICREA & UB) An Introduction to Hyperstationary Sets 39 / 46



Hyperstationary sets and indescribable cardinals

On the consistency strength of 2-stationarity

Let us write:

dξ(A) := {α : A ∩ α is ξ-stationary in α}

Definition (A. H. Mekler-S. Shelah, 1989)
A regular uncountable cardinal κ is a reflection cardinal if there exists a
proper, normal, and κ-complete ideal I on κ such that for every X ⊆ κ,

X ∈ I+ ⇒ d1(X ) ∈ I+.

Note: if κ is 2-stationary, then NSκ is the smallest such ideal.
κ is weakly compact ⇒ many reflection cardinals below κ.
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The consistency strength of hyperstationarity. Applications and
Open Questions

On the consistency strength of 2-stationarity

Theorem (A. H. Mekler-S. Shelah, 1989)
If κ is a reflection cardinal in L, then in some generic extension of L that
preserves cardinals, κ is 2-stationary. (In fact, the set Reg ∩ κ of regular
cardinals below κ is 2-stationary).

Corollary
The following are equiconsistent:

1 There exists a reflection cardinal.
2 There exists a 2-stationary cardinal.
3 There exists a regular cardinal κ such that every κ-free abelian group

is κ+-free.
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The consistency strength of hyperstationarity. Applications and
Open Questions

On the consistency strength of 2-stationarity

Recall that a regular cardinal κ is greatly Mahlo if there exists a proper,
normal, and κ-complete ideal I on κ such that Reg ∩ κ ∈ I∗, and for
every X ⊆ κ,

X ∈ I∗ ⇒ d1(X ) ∈ I∗.

Theorem (A. H. Mekler-S. Shelah, 1989)
In L, if κ is at most the first greatly-Mahlo cardinal, then κ is not a
reflection cardinal.

Thus, in L, the first reflection cardinal is strictly between the first
greatly-Mahlo and the first weakly-compact.
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The consistency strength of hyperstationarity. Applications and
Open Questions

On the consistency strength of n-stationarity

We would like to prove analogous results for the n-stationay sets. So, let’s

define:
Definition
For n > 0, a regular uncountable cardinal κ is an n-reflection cardinal if
there exists a proper, normal, and κ-complete ideal I on κ such that for
every X ⊆ κ,

X ∈ I+ ⇒ dn(X ) ∈ I+.

Note: If κ is n-s-stationary, then the set NSn
κ of non-n-s-stationary

subsets of κ is the least such ideal.
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The consistency strength of hyperstationarity. Applications and
Open Questions

On the consistency strength of n-stationarity

Theorem (J.B., M. Magidor, and S. Mancilla, 2015)
If κ is a 2-reflection cardinal in L, then in some generic extension of L that
preserves cardinals, κ is 3-stationary.
(In fact, the set Reg ∩ κ of regular cardinals below κ is 3-stationary).

Similar arguments should yield a similar result for n > 3.
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The consistency strength of hyperstationarity. Applications and
Open Questions

On the consistency strength of n-stationarity

Definition
A regular cardinal κ is n-greatly Mahlo if there exists a proper, normal, and
κ-complete ideal I on κ such that Reg ∩ κ ∈ I∗, and for every X ⊆ κ,

X ∈ I∗ ⇒ dn(X ) ∈ I∗.

Theorem (J.B. and S. Mancilla, 2014)
In L, if κ is at most the first n-greatly-Mahlo cardinal, then κ is not an
n-reflection cardinal.

Thus, in L, the first n-reflection cardinal is strictly between the first
n-greatly-Mahlo and the first Π1

n−1-indescribable.
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The consistency strength of hyperstationarity. Applications and
Open Questions

On the consistency strength of n-s-stationarity.

Magidor1 shows that the following are equiconsistent:
1 There exists a 2-s-stationary cardinal (i.e., a cardinal that reflects

simultaneously pairs of stationary sets).
2 There exists a weakly-compact cardinal.

Conjecture
The following should be equiconsistent for every n > 0:

1 There exists an (n + 1)-s-stationary cardinal.
2 There exists an Π1

n-indescribable cardinal.

1M. Magidor, On reflecting stationary sets. JSL 47 (1982)
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